Multi-dimensional Engine Modeling 2005
41st AIAA Aerospace Sciences Meeting & Exhibit

Radiative Transfer-I

A hands-on, integrated approach to solving combustion problems in diverse areas. An understanding of turbulence, combustion, and multiphase reacting flows is essential for engineers and scientists in many industries, including power generation, jet and rocket propulsion, pollution control, fire prevention and safety, and material processing. This book offers a highly practical discussion of burning behavior and chemical processes occurring in diverse materials, arming readers with the tools they need to solve the most complex combustion problems facing the scientific community today. The second of a two-volume work, Applications of Turbulent and Multiphase Combustion expands on topics involving...
laminar flames from Professor Kuo's bestselling book Principles of Combustion, Second Edition, then builds upon the theory discussed in the companion volume Fundamentals of Turbulent and Multiphase Combustion to address in detail cutting-edge experimental techniques and applications not covered anywhere else. Special features of this book include: Coverage of advanced applications such as solid propellants, burning behavior, and chemical boundary layer flows. A multiphase systems approach discussing basic concepts before moving to higher-level applications. A large number of practical examples gleaned from the authors' experience along with problems and a solutions manual. Engineers and researchers in chemical and mechanical engineering and materials science will find Applications of Turbulent and Multiphase Combustion an indispensable guide for upgrading their skills and keeping up with this rapidly evolving area. It is also an excellent resource for students and professionals in mechanical, chemical, and aerospace engineering.

Principles of Combustion

33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit

Publisher Description

Principles of Combustion

papers from the session Multi-Dimensional Engine Modeling, held during the SAE 2005 World Congress, April 11-14 in Detroit, MI, USA.

Computational Modeling for Fluid Flow and Interfacial Transport

Proceedings of the First International Symposium on Radiative Heat Transfer. Includes more than 50 papers on solution methods for the radiative transfer equation, transient radiation problems, radiative properties of gases, inverse radiation problems, modeling of comprehensive systems and more.

30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference

AIAA Aerospace Sciences Meeting and Exhibit, 42nd

Heat Transfer in Fire and Combustion Systems, 1994
Fundamentals of Turbulent and Multi-Phase Combustion

Hydrogen Energy

Memoirs of the Faculty of Engineering, Nagoya University

This book describes the challenges and solutions the energy sector faces by shifting towards a hydrogen based fuel economy. The most current and up-to-date efforts of countries and leaders in the automotive sector are reviewed as they strive to develop technology and find solutions to production, storage, and distribution challenges. Hydrogen fuel is a zero-emission fuel when burned with oxygen and is often used with electrochemical cells, or combustion in internal engines, to power vehicles and electric devices. This book offers unique solutions to integrating renewable sources of energy like wind or solar power into the production of hydrogen fuel, making it a cost effective, efficient and truly renewable alternative fuel.

Memoirs of the Faculty of Engineering, University of Nagoya

Flame Speed Control Using a Countercurrent Swirl Combustor

Combustion of Two-Phase Reactive Media addresses the complex phenomena involved in the burning of solid and liquid fuels. In fact, the multiplicity of phenomena characteristic of combustion of two-phase media determine the contents. The three parts deal with: the dynamics of a single particle; combustion wave propagation in two-phase reactive media; and thermal regimes of combustion reactors. The book generalizes the results of numerous investigations into the ignition and combustion of solid particles, droplets and bubbles, combustion wave propagation in heterogeneous reactive media, the stability of combustion of two-phase media, as well as the thermal regimes of high-temperature combustion reactors. It merges findings from the authors’ investigations into problems of two-phase flows and material from graduate-level courses they teach at Technion-Israel Institute of Technology.

Combustion Physics

A treatment of numerical methods offering a complete programming code in C. The book takes a step-by-step approach covering each numerical method, which are all illustrated by a worked-out sample program, and examines the pros and cons of alternate methods.

Oxygen-Enhanced Combustion

Hardbound. Transport processes are often characterized by the simultaneous presence of multiple dependent variables, multiple length scales, body forces, free boundaries and strong non-linearities. The various computational elements
important for the prediction of complex fluid flows and interfacial transport are presented in this volume. Practical applications, presented in the form of illustrations and examples are emphasized, as well as physical interpretation of the computed results. The book is intended as a reference for researchers and graduate students in mechanical, aerospace, chemical and materials engineering. Both macroscopic and microscopic (but still continuum) features are addressed. In order to lay down a good foundation to facilitate discussion of more advanced techniques, the book has been divided into three parts. Part I presents the basic concepts of finite difference schemes for solving parabolic, elliptic and hyperbolic partial dif

Applications of Turbulent and Multiphase Combustion

Combustion Engineering, Second Edition

This book is a follow-on to the author's bestseller, Principles of Combustion, Second Edition published in 2005. The text covers advanced topics of combustion and flame that are not covered anywhere else. Kuo provides a multiphase systems approach beginning with more common topics and moving to higher level applications such as reacting boundary layer flows, ignition of homogeneous mixtures, flame extinction phenomena, and detonation processes in condensed phase materials. As with Kuo's earlier book, large numbers of examples and problems and a solutions manual are provided.

Acta Polytechnica Scandinavica

Aerospace America

The Chartered Mechanical Engineer

Papers Presented at the AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference

Combustion

Combustion Engineering, Second Edition maintains the same goal as the original: to present the fundamentals of combustion science with application to today’s energy challenges. Using combustion applications to reinforce the fundamentals of combustion science, this text provides a uniquely accessible introduction to combustion for undergraduate students, first-year graduate students, and professionals in the workplace. Combustion is a critical issue impacting energy utilization, sustainability, and climate change. The challenge is to design safe and efficient combustion systems for many types of fuels in a way that protects the environment and enables sustainable lifestyles.
Emphasizing the use of combustion fundamentals in the engineering and design of combustion systems, this text provides detailed coverage of gaseous, liquid and solid fuel combustion, including focused coverage of biomass combustion, which will be invaluable to new entrants to the field. Eight chapters address the fundamentals of combustion, including fuels, thermodynamics, chemical kinetics, flames, detonations, sprays, and solid fuel combustion mechanisms. Eight additional chapters apply these fundamentals to furnaces, spark ignition and diesel engines, gas turbines, and suspension burning, fixed bed combustion, and fluidized bed combustion of solid fuels. Presenting a renewed emphasis on fundamentals and updated applications to illustrate the latest trends relevant to combustion engineering, the authors provide a number of pedagogic features, including: Numerous tables with practical data and formulae that link combustion fundamentals to engineering practice Concise presentation of mathematical methods with qualitative descriptions of their use Coverage of alternative and renewable fuel topics throughout the text Extensive example problems, chapter-end problems, and references These features and the overall fundamentals-to-practice nature of this book make it an ideal resource for undergraduate, first level graduate, or professional training classes. Students and practitioners will find that it is an excellent introduction to meeting the crucial challenge of engineering sustainable combustion systems in a cost-effective manner. A solutions manual and additional teaching resources are available with qualifying course adoption.

Applied Numerical Methods in C

Combustion of Two-Phase Reactive Media

87-1950-87-1999

6th AIAA/ASME Joint Thermophysics and Heat Transfer Conference

Power

AIAA 27th Aerospace Sciences Meeting

A Collection of Papers Presented at the 57th Conference on Glass Problems

Performance of in Situ Adaptive Tabulation in Computation of Non-premixed Turbulent Piloted Jet Flames
This comprehensive text covers principles and applications with an emphasis on the theoretical modeling of combustion. Addresses chemical thermodynamics and kinetics, conservation equations for multi-component reacting flows, deflagration and detonation waves, premixed laminar flames, spray combustion of fuel droplets, ignition, and related topics. Many examples are included to demonstrate the application of theory. Emphasizes the use of digital computers for solutions.

Heat and Mass Transfer in Fire and Combustion Systems, 1992

Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion - new technology producing oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include numerous environmental benefits as well as increased energy efficiency and productivity. The text compiles information about using oxygen to enhance high temperature industrial heating and melting processes - serving as a unique resource for specialists implementing the use of oxygen in combustion systems; combustion equipment and industrial gas suppliers; researchers; funding agencies for advanced combustion technologies; and agencies developing regulations for safe, efficient, and environmentally friendly combustion systems. Oxygen-Enhanced Combustion: Examines the fundamentals of using oxygen in combustion, pollutant emissions, oxygen production, and heat transfer Describes ferrous and nonferrous metals, glass, and incineration Discusses equipment, safety, design, and fuels Assesses recent trends including stricter environmental regulations, lower-cost methods of producing oxygen, improved burner designs, and increasing fuel costs Emphasizing applications and basic principles, this book will act as the primary resource for mechanical, chemical, aerospace, and environmental engineers and scientists; physical chemists; fuel technologists; fluid dynamists; and combustion design engineers. Topics include: General benefits Economics Potential problems Pollutant emissions Oxygen production Adsorption Air separation Heat transfer Ferrous metals Melting and refining processes Nonferrous metals Minerals Glass furnaces Incineration Safety Handling and storage Equipment design Flow controls Fuels

American Book Publishing Record

Chemical Engineering Abstracts

This graduate-level 2006 text incorporates these advances in a comprehensive treatment of the fundamental principles of combustion physics. The presentation emphasises analytical proficiency and physical insight, with the former achieved through complete, though abbreviated, derivations at different levels of rigor, and the latter through physical interpretations of analytical
solutions, experimental observations, and computational simulations. Exercises are mostly derivative in nature in order to further strengthen the student's mastery of the theory. Implications of the fundamental knowledge gained herein on practical phenomena are discussed whenever appropriate. These distinguishing features provide a solid foundation for an academic program in combustion science and engineering.

Computational Fluid Dynamics in Industrial Combustion

Throughout its previous four editions, Combustion has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engineering applications, this new edition continues that tradition. Greatly expanded end-of-chapter problem sets and new areas of combustion engineering applications make it even easier for students to grasp the significance of combustion to a wide range of engineering practice, from transportation to energy generation to environmental impacts. Combustion engineering is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications—including power generation in internal combustion automobile engines and gas turbine engines. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions, make this a crucial area of engineering. New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion—all interrelated and discussed by considering scaling issues (e.g., length and time scales) New information on sensitivity analysis of reaction mechanisms and generation and application of reduced mechanisms Expanded coverage of turbulent reactive flows to better illustrate real-world applications Important new sections on stabilization of diffusion flames—for the first time, the concept of triple flames will be introduced and discussed in the context of diffusion flame stabilization

A collection of technical papers

Advanced Computational Methods in Heat Transfer: Phase change and combustion stimulation

Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need to use CFD for combustion modeling. Computational Fluid Dynamics in Industrial Combustion fills this gap in the literature. Focusing on topics of interest to the practicing engineer, it codifies the many relevant books, papers, and reports written on this combined subject into a single, coherent reference. It looks at each topic from a somewhat narrow perspective to see how that topic affects modeling in
industrial combustion. The editor and his team of expert authors address these topics within three main sections: Modeling Techniques-The basics of CFD modeling in combustion Industrial Applications-Specific applications of CFD in the steel, aluminum, glass, gas turbine, and petrochemical industries Advanced Techniques-Subjects rarely addressed in other texts, including design optimization, simulation, and visualization Rapid increases in computing power and significant advances in commercial CFD codes have led to a tremendous increase in the application of CFD to industrial combustion. Thorough and clearly representing the techniques and issues confronted in industry, Computational Fluid Dynamics in Industrial Combustion will help bring you quickly up to date on current methods and gain the ability to set up and solve the various types of problems you will encounter.

Copyright code: 9723e2f28161cbe4adcb577ca274d93f